Development of a metabolomics-based data analysis approach for identifying drug metabolites based on high-resolution mass spectrometry

基于高分辨率质谱识别药物代谢物的代谢组学数据分析方法的开发

阅读:6
作者:Hsiao-Hsien Ting, Yi-Shiou Chiou, Tien-Yi Chang, Guan-Yu Lin, Pei-Jhen Li, Chia-Lung Shih

Abstract

A metabolomics-based approach to data analysis is required for drug metabolites to be identified quickly. This study developed such an approach based on high-resolution mass spectrometry. Our approach is a two-stage one that combines a time-course experiment with stable isotope tracing. Pioglitazone (PIO) was used to improve glycemic management for type 2 diabetes mellitus. Consequently, PIO was taken as a model drug for identifying metabolites. During Stage I of data analysis, 704 out of 26626 ions exhibited a positive relationship between ion abundance ratio and incubation time in a time-course experiment. During Stage II, 25 isotope pairs were identified among the 704 ions. Among these 25 ions, 18 exhibited a dose-response relationship. Finally, 14 of the 18 ions were verified to be PIO structure-related metabolite ions. Otherwise, orthogonal partial least squares-discriminant analysis (OPLS-DA) was adopted to mine PIO metabolite ions, and 10 PIO structure-related metabolite ions were identified. However, only four ions were identified by both our developed approach and OPLS-DA, indicating that differences in the designs of metabolomics-based approaches to data analysis can result in differences in which metabolites are identified. A total of 20 PIO structure-related metabolites were identified by our developed approach and OPLS-DA, and six metabolites were novel. The results demonstrated that our developed two-stage data analysis approach can be used to effectively mine data on PIO metabolite ions from a relatively complex matrix.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。