Sodium Butyrate as Key Regulator of Mitochondrial Function and Barrier Integrity of Human Glomerular Endothelial Cells

丁酸钠作为人类肾小球内皮细胞线粒体功能和屏障完整性的关键调节因子

阅读:1
作者:Maria Novella Nicese ,Roel Bijkerk ,Anton Jan Van Zonneveld ,Bernard M Van den Berg ,Joris I Rotmans

Abstract

The gut microbiota has emerged as an important modulator of cardiovascular and renal homeostasis. The composition of gut microbiota in patients suffering from chronic kidney disease (CKD) is altered, where a lower number of bacteria producing short chain fatty acids (SCFAs) is observed. It is known that SCFAs, such as butyrate and acetate, have protective effects against cardiovascular diseases and CKD but their mechanisms of action remain largely unexplored. In the present study, we investigated the effect of butyrate and acetate on glomerular endothelial cells. Human glomerular microvascular endothelial cells (hgMVECs) were cultured and exposed to butyrate and acetate and their effects on cellular proliferation, mitochondrial mass and metabolism, as well as monolayer integrity were studied. While acetate did not show any effects on hgMVECs, our results revealed that butyrate reduces the proliferation of hgMVECs, strengthens the endothelial barrier through increased expression of VE-cadherin and Claudin-5 and promotes mitochondrial biogenesis. Moreover, butyrate reduces the increase in oxygen consumption induced by lipopolysaccharides (LPS), revealing a protective effect of butyrate against the detrimental effects of LPS. Taken together, our data show that butyrate is a key player in endothelial integrity and metabolic homeostasis. Keywords: LPS; butyrate; endothelial barrier; glomerular endothelial cells; mitochondria; proliferation; seahorse; short chain fatty acids.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。