Investigating impacts of and susceptibility to rail noise playback across freshwater fishes reveals counterintuitive response profiles

研究淡水鱼对铁路噪音回放的影响和敏感性,揭示了违反直觉的反应特征

阅读:7
作者:Ryan J Friebertshauser, Daniel E Holt, Carol E Johnston, Matthew G Smith, Mary T Mendonça

Abstract

While the expansion of anthropogenic noise studies in aquatic habitats has produced conservation-based results for a range of taxa, relatively little attention has been paid to the potential impacts on stream fishes. Recent work has shown responses to road noise in single species of stream fish; however, assemblage-wide effects of anthropogenic noise pollution have not yet been investigated. By examining five metrics of disturbance across four ecologically and evolutionarily disparate species of stream fishes, a series of laboratory experiments aimed to describe the effects of and species susceptibility to anthropogenic noise playback. Each species studied represented a unique combination of hearing sensitivity and water column position. Physiological and behavioral metrics were compared across the presence and absence of rail-noise noise playback in four target species. Through repeated subsampling, the temporal dynamics of cortisol secretion in response to noise in two target species were additionally described. Rail-noise playback had no statistically significant effect on blood glucose or water-borne cortisol levels, with the exception of decreased cortisol in noise-exposed largescale stoneroller (Campostoma oligolepis). Time-course cortisol experiments revealed rapid secretion and showed minimal effects of noise at most observation points. The presence of noise produced significant changes in ventilation rate and swimming parameters in a portion of the four species observed representing the most conserved responses. Overall, effects of noise were observed in species contrary to what would be hypothesized based on theoretical hearing sensitivity and water column position demonstrating that predicting susceptibility to this type of stressor cannot be accomplished based off these course considerations alone. More importantly, we show that anthropogenic noise can disrupt a variety of behavioral and physiological processes in certain taxa and should be further investigated via measures of fitness in the wild.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。