PE (Prickly Eggplant) encoding a cytokinin-activating enzyme responsible for the formation of prickles in eggplant

PE(带刺茄子)编码一种细胞分裂素激活酶,负责茄子刺的形成

阅读:6
作者:Lei Zhang, Runzhi Zhang, Ping Yan, Liqian Zeng, Weiwei Zhao, Huiqian Feng, Ruyu Mu, Wenqian Hou

Abstract

Eggplant is one of the most important vegetables worldwide, with some varieties displaying prickles. These prickles, present on the leaves, stems, and fruit calyxes, posing challenges during cultivation, harvesting, and transportation, making them an undesirable agronomic trait. However, the genetic mechanisms underlying prickle morphogenesis in eggplant remain poorly understood, impeding genetic improvements. In this study, genetic analyses revealed that prickle morphogenesis is governed by a single dominant nuclear gene, termed PE (Prickly Eggplant). Subsequent bulk segregant RNA-sequencing (BSR-seq) and linkage analysis preliminarily mapped PE to chromosome 6. This locus was then fine mapped to a 9233 bp interval in a segregating population of 1109 plants, harboring only one candidate gene, SmLOG1, which encodes a LONELY GUY (LOG)-family cytokinin biosynthetic enzyme. Expression analyses via transcriptome and qRT-PCR demonstrate that SmLOG1 is predominantly expressed in immature prickles. CRISPR-Cas9 knockout experiments targeting SmLOG1 in prickly parental line 'PI 381159' abolished prickles across all tissues, confirming its critical role in prickle morphogenesis. Sequence analysis of SmLOG1 pinpointed variations solely within the non-coding region. We developed a cleaved amplified polymorphic sequences (CAPS) marker from a distinct SNP located at -735-bp within the SmLOG1 promoter, finding significant association with prickle variation in 190 eggplant germplasms. These findings enhance our understanding of the molecular mechanisms governing prickle development in eggplant and facilitate the use of marker-assisted selection (MAS) for breeding prickleless cultivars.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。