Expression of COX-2 in platelet-monocyte interactions occurs via combinatorial regulation involving adhesion and cytokine signaling

COX-2 在血小板-单核细胞相互作用中的表达是通过涉及粘附和细胞因子信号传导的组合调节发生的

阅读:8
作者:Dan A Dixon, Neal D Tolley, Kristi Bemis-Standoli, Mark L Martinez, Andrew S Weyrich, Jason D Morrow, Stephen M Prescott, Guy A Zimmerman

Abstract

Tight regulation of COX-2 expression is a key feature controlling eicosanoid production in atherosclerosis and other inflammatory syndromes. Adhesive interactions between platelets and monocytes occur in these conditions and deliver specific signals that trigger inflammatory gene expression. Using a cellular model of monocyte signaling induced by activated human platelets, we identified the central posttranscriptional mechanisms that regulate timing and magnitude of COX-2 expression. Tethering of monocytes to platelets and to purified P-selectin, a key adhesion molecule displayed by activated platelets, induces NF-kappaB activation and COX-2 promoter activity. Nevertheless, COX-2 mRNA is rapidly degraded, leading to aborted protein synthesis. Time-dependent signaling of monocytes induces a second phase of transcript accumulation accompanied by COX-2 enzyme synthesis and eicosanoid production. Here, generation of IL-1beta, a proinflammatory cytokine, promoted stabilization of COX-2 mRNA by silencing of the AU-rich mRNA decay element (ARE) in the 3'-untranslated region (3'UTR) of the mRNA. Consistent with observed mRNA stabilization, activated platelets or IL-1beta treatment induced cytoplasmic accumulation and enhanced ARE binding of the mRNA stability factor HuR in monocytes. These findings demonstrate that activated platelets induce COX-2 synthesis in monocytes by combinatorial signaling to transcriptional and posttranscriptional checkpoints. These checkpoints may be altered in disease and therefore useful as targets for antiinflammatory intervention.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。