Block of Granulocyte-Macrophage Colony-Stimulating Factor Prevents Inflammation-Induced Preterm Birth in a Mouse Model for Parturition

阻断粒细胞-巨噬细胞集落刺激因子可预防小鼠分娩模型中炎症引起的早产

阅读:6
作者:Christopher Nold, Julie Stone, Kathleen O'Hara, Patricia Davis, Vladislav Kiveliyk, Vanessa Blanchard, Steven M Yellon, Anthony T Vella

Conclusion

These studies demonstrate that GM-CSF is produced from multiple sites in the genital tract and that treatment with an antibody to GM-CSF prevents preterm birth. Curiously, the anti-mouse GM-CSF antibody did not decrease the number of macrophages in the cervix. Further research is needed to determine whether antibodies to GM-CSF can be utilized as a therapeutic agent to prevent preterm birth.

Objective

A multitude of factors promotes inflammation in the reproductive tract leading to preterm birth. Macrophages peak in the cervix prior to birth and their numbers are increased by the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF). We hypothesize GM-CSF is produced from multiple sites in the genital tract and is a key mediator in preterm birth. Study design: Ectocervical, endocervical, and amniotic fluid mesenchymal stem cells were treated with lipopolysaccharide (LPS), and the concentration and expression of GM-CSF was measured. Pregnant CD-1 mice on gestational day 17 received LPS and an intravenous injection of either anti-mouse GM-CSF or control antibody. After 6 hours, the preterm birth rate was recorded.

Results

Treatment with LPS increased the GM-CSF concentration and messenger RNA expression after 24 hours in all 3 cell lines ( P < .01). Mice treated with LPS and the GM-CSF antibody had a preterm birth rate of 25%, compared to a 66.7% preterm birth rate in controls, within 6 hours ( P < .05, χ2). Treatment with the anti-mouse GM-CSF antibody decreased the concentration of GM-CSF in the mouse serum ( P < .01) but did not alter the number of macrophages or collagen content in the cervix.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。