The Organization of Mitochondrial Supercomplexes is Modulated by Oxidative Stress In Vivo in Mouse Models of Mitochondrial Encephalopathy

在线粒体脑病小鼠模型中,体内氧化应激调节线粒体超复合物的组织

阅读:7
作者:Mir R Anwar, Amy Saldana-Caboverde, Sofia Garcia, Francisca Diaz

Abstract

We examine the effect of oxidative stress on the stability of mitochondrial respiratory complexes and their association into supercomplexes (SCs) in the neuron-specific Rieske iron sulfur protein (RISP) and COX10 knockout (KO) mice. Previously we reported that these two models display different grades of oxidative stress in distinct brain regions. Using blue native gel electrophoresis, we observed a redistribution of the architecture of SCs in KO mice. Brain regions with moderate levels of oxidative stress (cingulate cortex of both COX10 and RISP KO and hippocampus of the RISP KO) showed a significant increase in the levels of high molecular weight (HMW) SCs. High levels of oxidative stress in the piriform cortex of the RISP KO negatively impacted the stability of CI, CIII and SCs. Treatment of the RISP KO with the mitochondrial targeted antioxidant mitoTEMPO preserved the stability of respiratory complexes and formation of SCs in the piriform cortex and increased the levels of glutathione peroxidase. These results suggest that mild to moderate levels of oxidative stress can modulate SCs into a more favorable architecture of HMW SCs to cope with rising levels of free radicals and cover the energetic needs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。