Hyperbranched polyester hydrogels with controlled drug release and cell adhesion properties

具有控制药物释放和细胞粘附特性的超支化聚酯水凝胶

阅读:4
作者:Hongbin Zhang, Alpesh Patel, Akhilesh K Gaharwar, Silvia M Mihaila, Giorgio Iviglia, Shilpaa Mukundan, Hojae Bae, Huai Yang, Ali Khademhosseini

Abstract

Hyperbranched polyesters (HPE) have a high efficiency to encapsulate bioactive agents, including drugs, genes, and proteins, due to their globe-like nanostructure. However, the use of these highly branched polymeric systems for tissue engineering applications has not been broadly investigated. Here, we report synthesis and characterization of photocrosslinkable HPE hydrogels with sustained drug release characteristics for cellular therapies. These HPE can encapsulate hydrophobic drug molecules within the HPE cavities due to the presence of a hydrophobic inner structure that is otherwise difficult to achieve in conventional hydrogels. The functionalization of HPE with photocrosslinkable acrylate moieties renders the formation of hydrogels with a highly porous interconnected structure and mechanically tough network. The compressive modulus of HPE hydrogels was tunable by changing the crosslinking density. The feasibility of using these HPE networks for cellular therapies was investigated by evaluating cell adhesion, spreading, and proliferation on hydrogel surface. Highly crosslinked and mechanically stiff HPE hydrogels have higher cell adhesion, spreading, and proliferation compared to soft and complaint HPE hydrogels. Overall, we showed that hydrogels made from HPE could be used for biomedical applications that require spatial control of cell adhesion and controlled release of hydrophobic clues.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。