Escape and compensation from early HLA-B57-mediated cytotoxic T-lymphocyte pressure on human immunodeficiency virus type 1 Gag alter capsid interactions with cyclophilin A

早期 HLA-B57 介导的细胞毒性 T 淋巴细胞对人类免疫缺陷病毒 1 型的压力的逃避和补偿 Gag 改变衣壳与环丝氨酸蛋白酶 A 的相互作用

阅读:14
作者:Mark A Brockman, Arne Schneidewind, Matthew Lahaie, Aaron Schmidt, Toshiyuki Miura, Ivna Desouza, Faina Ryvkin, Cynthia A Derdeyn, Susan Allen, Eric Hunter, Joseph Mulenga, Paul A Goepfert, Bruce D Walker, Todd M Allen

Abstract

Certain histocompatibility leukocyte antigen (HLA) alleles are associated with improved clinical outcomes for individuals infected with human immunodeficiency virus type 1 (HIV-1), but the mechanisms for their effects remain undefined. An early CD8(+) T-cell escape mutation in the dominant HLA-B57-restricted Gag epitope TW10 (TSTLQEQIGW) has been shown to impair HIV-1 replication capacity in vitro. We demonstrate here that this T(242)N substitution in the capsid protein is associated with upstream mutations at residues H(219), I(223), and M(228) in the cyclophilin A (CypA)-binding loop in B57(+) individuals with progressive disease. In an independent cohort of epidemiologically linked transmission pairs, the presence of these substitutions in viruses encoding T(242)N was associated with significantly higher plasma viremia in donors, further suggesting that these secondary mutations compensated for the replication defect of T(242)N. Using NL4-3 constructs, we illustrate the ability of these CypA loop changes to partially restore replication of the T(242)N variant in vitro. Notably, these mutations also enhanced viral resistance to the drug cyclosporine A, indicating a reduced dependence of the compensated virus on CypA that is normally essential for optimal infectivity. Therefore, mutations in TW10 allow HIV-1 to evade a dominant early CD8(+) T-cell response, but the benefits of escape are offset by a defect in capsid function. These data suggest that TW10 escape variants undergo a postentry block that is partially overcome by changes in the CypA-binding loop and identify a mechanism for an HIV-1 fitness defect that may contribute to the slower disease progression associated with HLA-B57.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。