The roles of PARP-1 and XPD and their potential interplay in repairing bupivacaine-induced neuron oxidative DNA damage

PARP-1 和 XPD 在修复布比卡因诱导的神经元氧化性 DNA 损伤中的作用及其潜在的相互作用

阅读:8
作者:Wei Zhao, Zhongjie Liu, Jiaming Luo, Changqing Ma, Luying Lai, Zhengyuan Xia, Shiyuan Xu

Abstract

Bupivacaine has been widely used in clinical Anesthesia, but its neurotoxicity has been frequently reported, implicating cellular oxidative DNA damage as the major underlying mechanism. However, the mechanism underlying bupivacaine-induced oxidative DNA damage is unknown. We, thus, exposed SH-SY5Y cells to 1.5mM bupivacaine to induce neurotoxicity. Then, iTRAQ proteomic analysis was used to explore the repair of neuronal oxidative DNA damage. By analyzing the STRING version 11.0 database, the bioinformatics relationship between key repair enzymes was tracked. Subsequently, immunofluorescence co-localization and immunoprecipitation were used to investigate the interaction between key repair enzymes. The iTRAQ showed that Poly [ADP-ribose] polymerase 1 (PARP-1) from the base excision repair pathway participated closely in the repair of oxidative DNA damage induced by bupivacaine, and inhibition of PARP-1 expression significantly aggravated bupivacaine-induced DNA damage and apoptosis. Interestingly, this study showed that there were interactions and co-expression between PARP-1 and XPD (xeroderma pigmentosum D), another key protein of the nucleic acid excision repair pathway. After inhibiting XPD, PARP-1 expression was significantly reduced. However, simultaneous inhibition of both XPD and PARP-1 did not further increase DNA damage. It is concluded that PARP-1 may repair bupivacaine-induced oxidative DNA damage through XPD-mediated interactions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。