Two-Step Triethylamine-Based Synthesis of MgO Nanoparticles and Their Antibacterial Effect against Pathogenic Bacteria

基于三乙胺两步合成MgO纳米粒子及其对致病菌的抗菌作用

阅读:9
作者:Ramiro Muñiz Diaz, Pablo Eduardo Cardoso-Avila, José Antonio Pérez Tavares, Rita Patakfalvi, Virginia Villa Cruz, Héctor Pérez Ladrón de Guevara, Oscar Gutiérrez Coronado, Ramón Ignacio Arteaga Garibay, Quetzalcoatl Enrique Saavedra Arroyo, Virginia Francisca Marañón-Ruiz, Jesús Castañeda Contreras

Abstract

Magnesium oxide nanoparticles (MgO NPs) were obtained by the calcination of precursor microparticles (PM) synthesized by a novel triethylamine-based precipitation method. Scanning electron microscopy (SEM) revealed a mean size of 120 nm for the MgO NPs. The results of the characterizations for MgO NPs support the suggestion that our material has the capacity to attack, and have an antibacterial effect against, Gram-negative and Gram-positive bacteria strains. The ability of the MgO NPs to produce reactive oxygen species (ROS), such as superoxide anion radicals (O2•-) or hydrogen peroxide (H2O2), was demonstrated by the corresponding quantitative assays. The MgO antibacterial activity was evaluated against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria, with minimum inhibitory concentrations (MICs) of 250 and 500 ppm on the microdilution assays, respectively. Structural changes in the bacteria, such as membrane collapse; surface changes, such as vesicular formation; and changes in the longitudinal and horizontal sizes, as well as the circumference, were observed using atomic force microscopy (AFM). The lipidic peroxidation of the bacterial membranes was quantified, and finally, a bactericidal mechanism for the MgO NPs was also proposed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。