Inhibiting the Cholesterol Storage Enzyme ACAT1/SOAT1 in Aging Apolipoprotein E4 Mice Alters Their Brains' Inflammatory Profiles

抑制衰老载脂蛋白 E4 小鼠中的胆固醇储存酶 ACAT1/SOAT1 可改变其大脑的炎症特征

阅读:6
作者:Thao N Huynh, Emma N Fikse, Adrianna L De La Torre, Matthew C Havrda, Catherine C Y Chang, Ta Yuan Chang

Abstract

Aging and apolipoprotein E4 (APOE4) are the two most significant risk factors for late-onset Alzheimer's disease (LOAD). Compared to APOE3, APOE4 disrupts cholesterol homeostasis, increases cholesteryl esters (CEs), and exacerbates neuroinflammation in brain cells, including microglia. Targeting CEs and neuroinflammation could be a novel strategy to ameliorate APOE4-dependent phenotypes. Toll-like receptor 4 (TLR4) is a key macromolecule in inflammation, and its regulation is associated with the cholesterol content of lipid rafts in cell membranes. We previously demonstrated that in normal microglia expressing APOE3, inhibiting the cholesterol storage enzyme acyl-CoA:cholesterol acyltransferase 1 (ACAT1/SOAT1) reduces CEs, dampened neuroinflammation via modulating the fate of TLR4. We also showed that treating myelin debris-loaded normal microglia with ACAT inhibitor F12511 reduced cellular CEs and activated ABC transporter 1 (ABCA1) for cholesterol efflux. This study found that treating primary microglia expressing APOE4 with F12511 also reduces CEs, activates ABCA1, and dampens LPS-dependent NFκB activation. In vivo, two-week injections of nanoparticle F12511, which consists of DSPE-PEG2000, phosphatidylcholine, and F12511, to aged female APOE4 mice reduced TLR4 protein content and decreased proinflammatory cytokines, including IL-1β in mice brains. Overall, our work suggests nanoparticle F12511 is a novel agent to ameliorate LOAD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。