A novel role for Oct-2 in the lipopolysaccharide-mediated induction of resistin gene expression in RAW264.7 cells

Oct-2 在脂多糖介导的 RAW264.7 细胞抵抗素基因表达诱导中的新作用

阅读:5
作者:Shao-Chun Lu, Shwu-Fen Chang, Hui-Ling Chen, Yuan-Yi Chou, Ya-Hsin Lan, Chia-Ying Chuang, Wei-Hsuan Yu, Chia-Lin Chen

Abstract

Although resistin was first suggested as a possible link between obesity and diabetes, we have demonstrated previously that expression of resistin is induced by LPS (lipopolysaccharide). In the present study, we showed that LPS increased levels of resistin mRNA and promoter activity in murine RAW264.7 macrophages. Investigation of cis-regulatory elements in the mouse resistin promoter required for LPS-mediated induction showed that an Octamer (ATTTGCAT) element, located at -914 to -907, was required for maximal promoter activity in response to LPS stimulation. Co-transfection of RAW264.7 cells with a resistin promoter-luciferase construct and an Oct-1 or Oct-2 expression plasmid (pCG-Oct-1 or pCG-Oct-2) showed that Oct-2, but not Oct-1, activated the resistin promoter upon LPS treatment. Binding of Oct-2 to the Octamer element was demonstrated by supershift DNA-affinity precipitation and chromatin immunoprecipitation assays. Reverse transcription-PCR and Western blot results showed that levels of Oct-2 mRNA and protein were both up-regulated by LPS in RAW264.7 cells. The LPS-induced increase in Oct-2 protein was inhibited by LY294002 (a phosphoinositide 3-kinase inhibitor) post-transcriptionally, and the inhibition also resulted in a lower response of both resistin mRNA and promoter activity to LPS treatment. Moreover, specific knockdown of Oct-2 by RNA interference impaired the LPS-induced increase in resistin mRNA and promoter activity. Together, these results indicate that Oct-2 is involved in the LPS-mediated induction of resistin gene expression in macrophages and suggest that activation of Oct-2 is a part of LPS signalling pathways in macrophages.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。