Carbon source utilization patterns in dental plaque and microbial responses to sucrose, lactose, and phenylalanine consumption in severe early childhood caries

牙菌斑中的碳源利用模式以及严重儿童龋齿中微生物对蔗糖、乳糖和苯丙氨酸消耗的反应

阅读:13
作者:Weihua Shi, Jing Tian, He Xu, Guiyan Wang, Qiong Zhou, Man Qin

Background

Severe early childhood caries (S-ECC) is mainly caused by the interaction of microbiota and environmental factors. However, the metabolic profiles of S-ECC microbial communities and the community-level microbial responses to carbohydrates and amino acids are poorly understood.

Conclusion

S-ECC plaques had more active interaction with cariogenic carbohydrates like sucrose and lactose than healthy plaques. We supported lactose has less cariogenicity compared with sucrose from microbial community structural aspect. Phenylalanine may have a potentially inhibitory effect on caries development.

Methods

We collected supragingival plaques from 15 caries-free (CF) and 14 S-ECC children. Cultivation on Biolog AN microplates together with next-generation sequencing was used to analyze sole carbon source utilization patterns and microbial responses to sucrose, lactose and phenylalanine.

Results

S-ECC plaques had greater overall metabolic activity than those of CF ones. Comparing with CF, S-ECC plaques utilized more sucrose and lactose but less phenylalanine and then had greater response to carbohydrates. A remarkable increase of non-mutans Streptococci was observed in sucrose and lactose consumption. Lactose led to less differently distributed taxa than sucrose in both CF and S-ECC groups. Sucrose made the originally different S-ECC and CF communities eventually became similar to each other, but they remained dissimilar in lactose.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。