A Framework for Human Corneal Endothelial Cell Culture and Preliminary Wound Model Experiments with a New Cell Tracking Approach

采用新细胞追踪方法进行人角膜内皮细胞培养和初步伤口模型实验的框架

阅读:9
作者:Francisco Bandeira, Gustavo Teixeira Grottone, Joyce Luciana Covre, Priscila Cardoso Cristovam, Renata Ruoco Loureiro, Francisco Irochima Pinheiro, Ricardo Pedro Casaroli-Marano, Waleska Donato, José Álvaro Pereira Gomes

Abstract

Cell injection therapy is emerging as an alternative to treat corneal endothelial dysfunction (CED) and to avoid corneal scarring due to bullous keratopathy. However, establishing a standardized culture procedure that provides appropriate cell yield while retaining functional features remains a challenge. Here, we describe a detailed framework obtained from in vitro culture of human corneal endothelial cells (HCECs) and comparative in vivo experimental models for CED treatment with a new cell tracking approach. Two digestion methods were compared regarding HCEC morphology and adhesion. The effect of Y-27632 (ROCKi) supplementation on final cell yield was also assessed. Cell adhesion efficacy with two cell delivery systems (superparamagnetic embedding and cell suspension) was evaluated in an ex vivo human cornea model and in an in vivo rabbit CED model. The injection of supplemented culture medium or balanced salt solution (BSS) was used for the positive and negative controls, respectively. HCEC isolation with collagenase resulted in better morphology and adhesion of cultured HCEC when compared to EDTA. Y-27632 supplementation resulted in a 2.6-fold increase in final cell yield compared to the control. Ex vivo and in vivo adhesion with both cell delivery systems was confirmed by cell tracker fluorescence detection. Corneal edema and opacity improved in both animal groups treated with cultured HCEC. The corneas in the control groups remained opaque. Both HCEC delivery systems seemed comparable as treatments for CED and for the prevention of corneal scarring.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。