Investigating environmentally persistent free radicals (EPFRs) emissions of 3D printing process

研究 3D 打印过程中环境持久性自由基 (EPFR) 的排放

阅读:6
作者:Farhana Hasan, Phillip M Potter, Souhail R Al-Abed, Joanna Matheson, Slawomir M Lomnicki

Abstract

In recent years, the emission of particles and gaseous pollutants from 3D printing has attracted much attention due to potential health risks. This study investigated the generation of environmentally persistent free radicals (EPFRs, organic free radicals stabilized on or inside particles) in total particulate matter (TPM) released during the 3D printing process. Commercially available 3D printer filaments, made of acrylonitrile-butadiene-styrene (ABS) in two different colors and metal content, ABS-blue (19.66 μg/g Cu) and ABS-black (3.69 μg/g Fe), were used for printing. We hypothesized that the metal content/composition of the filaments contributes not only to the type and number of EPFRs in TPM emissions, but also impacts the overall yield of TPM emissions. TPM emissions during printing with ABS-blue (11.28 μg/g of printed material) were higher than with ABS-black (7.29 μg/g). Electron paramagnetic resonance (EPR) spectroscopy, employed to measure EPFRs in TPM emissions of both filaments, revealed higher EPFR concentrations in ABS-blue TPM (6.23 × 1017 spins/g) than in ABS-black TPM (9.72 × 1016 spins/g). The presence of copper in the ABS-blue contributed to the formation of mostly oxygen-centered EPFR species with a g-factor of ~2.0041 and a lifetime of 98 days. The ABS-black EPFR signal had a lower g-factor of ~2.0011, reflecting the formation of superoxide radicals during the printing process, which were shown to have an "estimated tentative" lifetime of 26 days. Both radical species (EPFRs and superoxides) translate to a potential health risk through inhalation of emitted particles.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。