Binding of MG132 or deletion of the Thr active sites in HslV subunits increases the affinity of HslV protease for HslU ATPase and makes this interaction nucleotide-independent

MG132 的结合或 HslV 亚基中 Thr 活性位点的缺失会增加 HslV 蛋白酶对 HslU ATPase 的亲和力,并使这种相互作用不依赖于核苷酸

阅读:7
作者:Eunyong Park, Jung Wook Lee, Soo Hyun Eom, Jae Hong Seol, Chin Ha Chung

Abstract

HslVU is an ATP-dependent protease in bacteria consisting of HslV dodecamer and HslU hexamer. Upon ATP binding, HslU ATPase allosterically activates the catalytic function of HslV protease by 1-2 orders of magnitude. However, relatively little is known about the role of HslV in the control of HslU function. Here we describe the involvement of the N-terminal Thr active sites (Thr-1) of HslV in the communication between HslV and HslU. Binding of proteasome inhibitors to Thr-1 led to a dramatic increase in the interaction between HslV and HslU with a marked increase in ATP hydrolysis by HslU. Moreover, carbobenzoxy-leucyl-leucyl-leucinal (MG132) could bind to Thr-1 of free HslV, and this binding induced a tight interaction between HslV and HslU with the activation of HslU ATPase, suggesting that substrate-bound HslV can allosterically regulate HslU function. Unexpectedly, the deletion of Thr-1 also caused a dramatic increase in the affinity between HslV and HslU even in the absence of ATP. Furthermore, the increase in the number of the Thr-1 deletion mutant subunit in place of HslV subunit in a dodecamer led to a proportional increase in the affinity between HslV and HslU with gradual activation of HslU ATPase. Although the molecular mechanism elucidating how the Thr-1 deletion influences the interaction between HslV and HslU remains unknown, these results suggest an additional allosteric mechanism for the control of HslU function by HslV. Taken together, our findings indicate a critical involvement of Thr-1 of HslV in the reciprocal control of HslU function and, thus, for their communication.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。