Random, asynchronous, and asymmetric transcriptional activity of enhancer-flanking major immediate-early genes ie1/3 and ie2 during murine cytomegalovirus latency in the lungs

小鼠巨细胞病毒在肺中的潜伏期,增强子侧翼主要立即早期基因 ie1/3 和 ie2 的随机、异步和不对称转录活性

阅读:14
作者:N K Grzimek, D Dreis, S Schmalz, M J Reddehase

Abstract

The lungs are a major organ site of cytomegalovirus (CMV) pathogenesis, latency, and recurrence. Previous work on murine CMV latency has documented a high load and an even distribution of viral genomes in the lungs after the resolution of productive infection. Initiation of the productive cycle requires expression of the ie1/3 transcription unit, which is driven by the immediate-early (IE) promoter P(1/3) and generates IE1 and IE3 transcripts by differential splicing. Latency is molecularly defined by the absence of IE3 transcripts specifying the essential transactivator protein IE3. In contrast, IE1 transcripts were found to be generated focally and randomly, reflecting sporadic P(1/3) activity. Selective generation of IE1 transcripts implies molecular control of latency operating after ie1/3 transcription initiation. P(1/3) is regulated by an upstream enhancer. It is widely assumed that the viral transcriptional program is started by activation of the enhancer through the binding of transcription factors. Accordingly, stochastic transcription during latency might reflect episodes of enhancer activation by the "noise" activity of intrinsic transcription factors. In addition to ie1/3, the enhancer controls gene ie2, which has its own promoter, P(2), and is transcribed in opposite direction. We show here that ie2 is also randomly transcribed during latency. Notably, however, ie1 and ie2 were found to be expressed independently. We infer from this finding that expression of the major IE genes is regulated asymmetrically and asynchronously via the combined control unit P(1/3) -E-P(2). Our data are consistent with a stochastic nature of enhancer action as it is proposed by the "binary" or probability model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。