Branched late-steps of the cytosolic iron-sulphur cluster assembly machinery of Trypanosoma brucei

布氏锥虫胞浆铁硫簇组装机制的分支后期步骤

阅读:8
作者:Maiko Luis Tonini, Priscila Peña-Diaz, Alexander C Haindrich, Somsuvro Basu, Eva Kriegová, Antonio J Pierik, Roland Lill, Stuart A MacNeill, Terry K Smith, Julius Lukeš

Abstract

Fe-S clusters are ubiquitous cofactors of proteins involved in a variety of essential cellular processes. The biogenesis of Fe-S clusters in the cytosol and their insertion into proteins is accomplished through the cytosolic iron-sulphur protein assembly (CIA) machinery. The early- and middle-acting modules of the CIA pathway concerned with the assembly and trafficking of Fe-S clusters have been previously characterised in the parasitic protist Trypanosoma brucei. In this study, we applied proteomic and genetic approaches to gain insights into the network of protein-protein interactions of the late-acting CIA targeting complex in T. brucei. All components of the canonical CIA machinery are present in T. brucei including, as in humans, two distinct CIA2 homologues TbCIA2A and TbCIA2B. These two proteins are found interacting with TbCIA1, yet the interaction is mutually exclusive, as determined by mass spectrometry. Ablation of most of the components of the CIA targeting complex by RNAi led to impaired cell growth in vitro, with the exception of TbCIA2A in procyclic form (PCF) trypanosomes. Depletion of the CIA-targeting complex was accompanied by reduced levels of protein-bound cytosolic iron and decreased activity of an Fe-S dependent enzyme in PCF trypanosomes. We demonstrate that the C-terminal domain of TbMMS19 acts as a docking site for TbCIA2B and TbCIA1, forming a trimeric complex that also interacts with target Fe-S apo-proteins and the middle-acting CIA component TbNAR1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。