Caffeine is associated with improved alveolarization and angiogenesis in male mice following hyperoxia induced lung injury

咖啡因与高氧诱发肺损伤后雄性小鼠肺泡形成和血管生成改善有关

阅读:4
作者:Vikramaditya Dumpa, Lori Nielsen, Huamei Wang, Vasantha H S Kumar

Background

Caffeine therapy for apnea of prematurity reduces the incidence of bronchopulmonary dysplasia (BPD) in premature neonates. Several mechanisms, including improvement in pulmonary mechanics underly beneficial effects of caffeine in BPD. As vascular development promotes alveologenesis, we hypothesized that caffeine might enhance angiogenesis in the lung, promoting lung growth, thereby attenuating BPD.

Conclusions

Postnatal caffeine by modulating angiogenic gene expression early in lung development may restore the pulmonary microvasculature and alveolarization in adult lung.

Methods

C57Bl/6 mice litters were randomized within 12 h of birth to room air (RA) or 95%O2 to receive caffeine (20 mg/kg/day) or placebo for 4 days and recovered in RA for 12wks. The lung mRNA and protein expression for hypoxia-inducible factors (HIF) and angiogenic genes performed on day 5. Lung morphometry and vascular remodeling assessed on inflation fixed lungs at 12wks.

Results

Caffeine and hyperoxia in itself upregulate HIF-2α and vascular endothelial growth factor gene expression. Protein expression of HIF-2α and VEGFR1 were higher in hyperoxia/caffeine and angiopoietin-1 lower in hyperoxia. An increase in radial alveolar count, secondary septal count, and septal length with a decrease in mean linear intercept indicate an amelioration of hyperoxic lung injury by caffeine. An increase in vessel surface area and a significant reduction in smooth muscle thickness of the pulmonary arterioles may suggest a beneficial effect of caffeine on vascular remodeling in hyperoxia, especially in male mice. Conclusions: Postnatal caffeine by modulating angiogenic gene expression early in lung development may restore the pulmonary microvasculature and alveolarization in adult lung.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。