Bempedoic Acid Unveils Therapeutic Potential in Non-Alcoholic Fatty Liver Disease: Suppression of the Hepatic PXR-SLC13A5/ACLY Signaling Axis

贝培多酸揭示其在非酒精性脂肪肝疾病中的治疗潜力:抑制肝脏 PXR-SLC13A5/ACLY 信号轴

阅读:4
作者:Qiushuang Sun, Yating Guo, Wenjun Hu, Mengdi Zhang, Shijiao Wang, Yuanyuan Lei, Haitao Meng, Ning Li, Pengfei Xu, Zhiyu Li, Haishu Lin, Fang Huang, Zhixia Qiu

Abstract

The hepatic SLC13A5/SLC25A1-ATP-dependent citrate lyase (ACLY) signaling pathway, responsible for maintaining the citrate homeostasis, plays a crucial role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Bempedoic acid (BA), an ACLY inhibitor commonly used for managing hypercholesterolemia, has shown promising results in addressing hepatic steatosis. This study aimed to elucidate the intricate relationships in processes of hepatic lipogenesis among SLC13A5, SLC25A1, and ACLY and to examine the therapeutic potential of BA in NAFLD, providing insights into its underlying mechanism. In murine primary hepatocytes and HepG2 cells, the silencing or pharmacological inhibition of SLC25A1/ACLY resulted in significant upregulation of SLC13A5 transcription and activity. This increase in SLC13A5 activity subsequently led to enhanced lipogenesis, indicating a compensatory role of SLC13A5 when the SLC25A1/ACLY pathway was inhibited. However, BA effectively counteracted this upregulation, reduced lipid accumulation, and ameliorated various biomarkers of NAFLD. The disease-modifying effects of BA were further confirmed in NAFLD mice. Mechanistic investigations revealed that BA could reverse the elevated transcription levels of SLC13A5 and ACLY, and the subsequent lipogenesis induced by PXR activation in vitro and in vivo. Importantly, this effect was diminished when PXR was knocked down, suggesting the involvement of the hepatic PXR-SLC13A5/ACLY signaling axis in the mechanism of BA action. In conclusion, SLC13A5-mediated extracellular citrate influx emerges as an alternative pathway to SLC25A1/ACLY in the regulation of lipogenesis in hepatocytes, BA exhibits therapeutic potential in NAFLD by suppressing the hepatic PXR-SLC13A5/ACLY signaling axis, while PXR, a key regulator in drug metabolism may be involved in the pathogenesis of NAFLD. SIGNIFICANCE STATEMENT: This work describes that bempedoic acid, an ATP-dependent citrate lyase (ACLY) inhibitor, ameliorates hepatic lipid accumulation and various hallmarks of non-alcoholic fatty liver disease. Suppression of hepatic SLC25A1-ACLY pathway upregulates SLC13A5 transcription, which in turn activates extracellular citrate influx and the subsequent DNL. Whereas in hepatocytes or the liver tissue challenged with high energy intake, bempedoic acid reverses compensatory activation of SLC13A5 via modulating the hepatic PXR-SLC13A5/ACLY axis, thereby simultaneously downregulating SLC13A5 and ACLY.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。