IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1

来自患有 IgA 肾病的患者的 IgA1 分泌细胞系产生异常糖基化的 IgA1

阅读:5
作者:Hitoshi Suzuki, Zina Moldoveanu, Stacy Hall, Rhubell Brown, Huong L Vu, Lea Novak, Bruce A Julian, Milan Tomana, Robert J Wyatt, Jeffrey C Edberg, Graciela S Alarcón, Robert P Kimberly, Yasuhiko Tomino, Jiri Mestecky, Jan Novak

Abstract

Aberrant glycosylation of IgA1 plays an essential role in the pathogenesis of IgA nephropathy. This abnormality is manifested by a deficiency of galactose in the hinge-region O-linked glycans of IgA1. Biosynthesis of these glycans occurs in a stepwise fashion beginning with the addition of N-acetylgalactosamine by the enzyme N-acetylgalactosaminyltransferase 2 and continuing with the addition of either galactose by beta1,3-galactosyltransferase or a terminal sialic acid by a N-acetylgalactosamine-specific alpha2,6-sialyltransferase. To identify the molecular basis for the aberrant IgA glycosylation, we established EBV-immortalized IgA1-producing cells from peripheral blood cells of patients with IgA nephropathy. The secreted IgA1 was mostly polymeric and had galactose-deficient O-linked glycans, characterized by a terminal or sialylated N-acetylgalactosamine. As controls, we showed that EBV-immortalized cells from patients with lupus nephritis and healthy individuals did not produce IgA with the defective galactosylation pattern. Analysis of the biosynthetic pathways in cloned EBV-immortalized cells from patients with IgA nephropathy indicated a decrease in beta1,3-galactosyltransferase activity and an increase in N-acetylgalactosamine-specific alpha2,6-sialyltransferase activity. Also, expression of beta1,3-galactosyltransferase was significantly lower, and that of N-acetylgalactosamine-specific alpha2,6-sialyltransferase was significantly higher than the expression of these genes in the control cells. Thus, our data suggest that premature sialylation likely contributes to the aberrant IgA1 glycosylation in IgA nephropathy and may represent a new therapeutic target.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。