Potentiation of Catalase-Mediated Plant Thermotolerance by N-Terminal Attachment of Solubilizing/Thermostabilizing Fusion Partners

通过 N 端连接增溶/热稳定融合蛋白增强过氧化氢酶介导的植物耐热性

阅读:13
作者:Guoqing Xie, Yanrong Huang, Di Hu, Yinyu Xia, Ming Gong, Zhurong Zou

Abstract

Catalase (CAT) plays a crucial role in plant responses to environmental stresses and maintaining redox homeostasis. However, its putative heat lability might compromise its activity and function, thus restricting plant thermotolerance. Herein, we verified Arabidopsis CAT3 was of poor thermostability that was then engineered by fusion expression in Escherichia coli. We found that our selected fusion partners, three hyperacidic mini-peptides and the short rubredoxin from hyperthermophile Pyrococcus furiosus, were commonly effectual to enhance the solubility and thermostability of CAT3 and enlarge its improvement on heat tolerance in E. coli and yeast. Most importantly, this finding was also achievable in plants. Fusion expression could magnify CAT3-mediated thermotolerance in tobacco. Under heat stress, transgenic lines expressing CAT3 fusions generally outperformed native CAT3 which in turn surpassed wild-type tobacco, in terms of seed germination, seedling survival, plant recovery growth, protection of chlorophyll and membrane lipids, elimination of H2O2, as well as mitigation of cell damage in leaves and roots. Moreover, we revealed that the introduced CAT3 or its fusions seemed solely responsible for the enhanced thermotolerance in tobacco. Prospectively, this fusion expression strategy would be applicable to other crucial plant proteins of intrinsic heat instability and thus provide an alternative biotechnological route for ameliorating plant heat tolerance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。