Integrated Metabolomics and Transcriptomics Provide Key Molecular Insights into Floral Stage-Driven Flavonoid Pathway in Safflower

整合代谢组学和转录组学为红花花期驱动的黄酮类化合物途径提供关键的分子见解

阅读:9
作者:Lili Yu, Naveed Ahmad, Weijie Meng, Shangyang Zhao, Yue Chang, Nan Wang, Min Zhang, Na Yao, Xiuming Liu, Jian Zhang

Abstract

Safflower (Carthamus tinctorius L.) is a traditional Chinese medicinal herb renowned for its high flavonoid content and significant medicinal value. However, the dynamic changes in safflower petal flavonoid profiles across different flowering phases present a challenge in optimizing harvest timing and medicinal use. To enhance the utilization of safflower, this study conducted an integrated transcriptomic and metabolomic analysis of safflower petals at different flowering stages. Our findings revealed that certain flavonoids were more abundant during the fading stage, while others peaked during full bloom. Specifically, seven metabolites, including p-coumaric acid, naringenin chalcone, naringenin, dihydrokaempferol, apigenin, kaempferol, and quercetin, accumulated significantly during the fading stage. In contrast, dihydromyricetin and delphinidin levels were notably reduced. Furthermore, key genes in the flavonoid biosynthesis pathway, such as 4CL, DFR, and ANR, exhibited up-regulated expression with safflower's flowering progression, whereas CHI, F3H, and FLS were down-regulated. Additionally, exposure to UV-B stress at full bloom led to an up-regulation of flavonoid content and altered the expression of key flavonoid biosynthetic genes over time. This study not only elucidates the regulatory mechanisms underlying flavonoid metabolism in safflower but also provides insights for maximizing its medicinal and industrial applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。