Extracellular matrix proteases contribute to progression of pelvic organ prolapse in mice and humans

细胞外基质蛋白酶促进小鼠和人类盆腔器官脱垂的进展

阅读:4
作者:Madhusudhan Budatha, Shayzreen Roshanravan, Qian Zheng, Cecilia Weislander, Shelby L Chapman, Elaine C Davis, Barry Starcher, R Ann Word, Hiromi Yanagisawa

Abstract

Pelvic organ prolapse (POP) is a common condition affecting almost half of women over the age of 50. The molecular and cellular mechanisms underlying this condition, however, remain poorly understood. Here we have reported that fibulin-5, an integrin-binding matricellular protein that is essential for elastic fiber assembly, regulated the activity of MMP-9 to maintain integrity of the vaginal wall and prevented development of POP. In murine vaginal stromal cells, fibulin-5 inhibited the β1 integrin-dependent, fibronectin-mediated upregulation of MMP-9. Mice in which the integrin-binding motif was mutated to an integrin-disrupting motif (Fbln5RGE/RGE) exhibited upregulation of MMP-9 in vaginal tissues. In contrast to fibulin-5 knockouts (Fbln5-/-), Fbln5RGE/RGE mice were able to form intact elastic fibers and did not exhibit POP. However, treatment of mice with β-aminopropionitrile (BAPN), an inhibitor of matrix cross-linking enzymes, induced subclinical POP. Conversely, deletion of Mmp9 in Fbln5-/- mice significantly attenuated POP by increasing elastic fiber density and improving collagen fibrils. Vaginal tissue samples from pre- and postmenopausal women with POP also displayed significantly increased levels of MMP-9. These results suggest that POP is an acquired disorder of extracellular matrix and that therapies targeting matrix proteases may be successful for preventing or ameliorating POP in women.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。