Wall teichoic acids are dispensable for anchoring the PNAG exopolysaccharide to the Staphylococcus aureus cell surface

壁磷壁酸对于将 PNAG 胞外多糖锚定到金黄色葡萄球菌细胞表面是必不可少的

阅读:7
作者:Marta Vergara-Irigaray, Tomas Maira-Litrán, Nekane Merino, Gerald B Pier, José R Penadés, Iñigo Lasa

Abstract

Biofilm formation in Staphylococcus aureus is usually associated with the production of the poly-N-acetylglucosamine (PNAG) exopolysaccharide, synthesized by proteins encoded by the icaADBC operon. PNAG is a linear beta-(1-6)-linked N-acetylglucosaminoglycan that has to be partially deacetylated and consequently positively charged in order to be associated with bacterial cell surfaces. Here, we investigated whether attachment of PNAG to bacterial surfaces is mediated by ionic interactions with the negative charge of wall teichoic acids (WTAs), which represent the most abundant polyanions of the Gram-positive bacterial envelope. We generated WTA-deficient mutants by in-frame deletion of the tagO gene in two genetically unrelated S. aureus strains. The DeltatagO mutants were more sensitive to high temperatures, showed a higher degree of cell aggregation, had reduced initial adherence to abiotic surfaces and had a reduced capacity to form biofilms under both steady-state and flow conditions. However, the levels as well as the strength of the PNAG interaction with the bacterial cell surface were similar between DeltatagO mutants and their corresponding wild-type strains. Furthermore, double DeltatagO DeltaicaADBC mutants displayed a similar aggregative phenotype to that of single DeltatagO mutants, indicating that PNAG is not responsible for the aggregative behaviour observed in DeltatagO mutants. Overall, the absence of WTAs in S. aureus had little effect on PNAG production or anchoring to the cell surface, but did affect the biofilm-forming capacity, cell aggregative behaviour and the temperature sensitivity/stability of S. aureus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。