NFAT-induced histone acetylation relay switch promotes c-Myc-dependent growth in pancreatic cancer cells

NFAT诱导的组蛋白乙酰化接力开关促进胰腺癌细胞c-Myc依赖性生长

阅读:9
作者:Alexander Köenig, Thomas Linhart, Katrin Schlengemann, Kristina Reutlinger, Jessica Wegele, Guido Adler, Garima Singh, Leonie Hofmann, Steffen Kunsch, Thomas Büch, Eva Schäfer, Thomas M Gress, Martin E Fernandez-Zapico, Volker Ellenrieder

Aims

Induction of immediate early transcription factors (ITF) represents the first transcriptional program controlling mitogen-stimulated cell cycle progression in cancer. Here, we examined the transcriptional mechanisms regulating the ITF protein c-Myc and its role in pancreatic cancer growth in vitro and in vivo.

Background & aims

Induction of immediate early transcription factors (ITF) represents the first transcriptional program controlling mitogen-stimulated cell cycle progression in cancer. Here, we examined the transcriptional mechanisms regulating the ITF protein c-Myc and its role in pancreatic cancer growth in vitro and in vivo.

Conclusions

Our study uncovers a novel mechanism regulating cell growth and identifies the NFAT/ELK complex as modulators of early stages of mitogen-stimulated proliferation in pancreatic cancer cells.

Methods

Expression of ITF proteins was examined by reverse-transcription polymerase chain reaction and immunoblotting, and its implications in cell cycle progression and growth was determined by flow cytometry and [(3)H]-thymidine incorporation. Intracellular Ca(2+) concentrations, calcineurin activity, and cellular nuclear factor of activated T cells (NFAT) distribution were analyzed. Transcription factor complex formations and promoter regulation were examined by immunoprecipitations, reporter gene assays, and chromatin immunoprecipitation. Using a combination of RNA interference knockdown technology and xenograft models, we analyzed the significance for pancreatic cancer tumor growth.

Results

Serum promotes pancreatic cancer growth through induction of the proproliferative NFAT/c-Myc axis. Mechanistically, serum increases intracellular Ca(2+) concentrations and activates the calcineurin/NFAT pathway to induce c-Myc transcription. NFAT binds to a serum responsive element within the proximal promoter, initiates p300-dependent histone acetylation, and creates a local chromatin structure permissive for the inducible recruitment of Ets-like gene (ELK)-1, a protein required for maximal activation of the c-Myc promoter. The functional significance of this novel pathway was emphasized by impaired c-Myc expression, G1 arrest, and reduced tumor growth upon NFAT depletion in vitro and in vivo. Conclusions: Our study uncovers a novel mechanism regulating cell growth and identifies the NFAT/ELK complex as modulators of early stages of mitogen-stimulated proliferation in pancreatic cancer cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。