Inhibition of Gap Junction Formation Prior to Implantation of Bone Marrow-Derived Mesenchymal Cells Improves Function in the Ischemic Myocardium

植入骨髓间充质细胞前抑制间隙连接形成可改善缺血心肌的功能

阅读:5
作者:Santipongse Chatchavalvanich, Robert A Boomsma, Jack M Tietema, David L Geenen

Abstract

Bone marrow-derived mesenchymal stem cells (BM-MSC) are reported to induce beneficial effects in the heart following ischemia, but a loss of these cells within hours of implantation could significantly diminish their long-term effect. We hypothesized that early coupling between BM-MSC and ischemic cardiomyocytes through gap junctions (GJ) may play an important role in stem cell survival and retention in the acute phase of myocardial ischemia. To determine the effect of GJ inhibition on murine BM-MSC in vivo, we induced ischemia in mice using 90 min left anterior descending coronary artery (LAD) occlusion followed by BM-MSC implantation and reperfusion. The inhibition of GJ coupling prior to BM-MSC implantation led to early improvement in cardiac function compared to mice in which GJ coupling was not inhibited. Our results with in vitro studies also demonstrated increased survival in BM-MSCs subjected to hypoxia after inhibition of GJ. While functional GJ are critical for the long-term integration of stem cells within the myocardium, early GJ communication may represent a novel paradigm whereby ischemic cardiomyocytes induce a "bystander effect" when coupled to newly transplanted BM-MSC and thus impair cell retention and survival.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。