In Vivo Generation of Gut-Homing Regulatory T Cells for the Suppression of Colitis

体内生成肠归巢调节性 T 细胞以抑制结肠炎

阅读:8
作者:Yi Xu, Yanmei Cheng, David J Baylink, Samiksha Wasnik, Gati Goel, Mei Huang, Huynh Cao, Xuezhong Qin, Kin-Hing William Lau, Christian Chan, Adam Koch, Linh H Pham, Jintao Zhang, Chih-Huang Li, Xiaohua Wang, Edmundo Carreon Berumen, James Smith, Xiaolei Tang2

Abstract

Current therapies for gut inflammation have not reached the desired specificity and are attended by unintended immune suppression. This study aimed to provide evidence for supporting a hypothesis that direct in vivo augmentation of the induction of gut-homing regulatory T (Treg) cells is a strategy of expected specificity for the treatment of chronic intestinal inflammation (e.g., inflammatory bowel disease). We showed that dendritic cells (DCs), engineered to de novo produce high concentrations of both 1,25-dihydroxyvitamin D, the active vitamin D metabolite, and retinoic acid, an active vitamin A metabolite, augmented the induction of T cells that express both the regulatory molecule Foxp3 and the gut-homing receptor CCR9 in vitro and in vivo. In vivo, the newly generated Ag-specific Foxp3+ T cells homed to intestines. Additionally, transfer of such engineered DCs robustly suppressed ongoing experimental colitis. Moreover, CD4+ T cells from spleens of the mice transferred with the engineered DCs suppressed experimental colitis in syngeneic hosts. The data suggest that the engineered DCs enhance regulatory function in CD4+ T cell population in peripheral lymphoid tissues. Finally, we showed that colitis suppression following in vivo transfer of the engineered DCs was significantly reduced when Foxp3+ Treg cells were depleted. The data indicate that maximal colitis suppression mediated by the engineered DCs requires Treg cells. Collectively, our data support that DCs de novo overproducing both 1,25-dihydroxyvitamin D and retinoic acid are a promising novel therapy for chronic intestinal inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。