Cancer-Associated Fibroblasts Influence Survival in Pleural Mesothelioma: Digital Gene Expression Analysis and Supervised Machine Learning Model

癌症相关成纤维细胞影响胸膜间皮瘤的生存:数字基因表达分析和监督机器学习模型

阅读:8
作者:Sabrina Borchert, Alexander Mathilakathu, Alina Nath, Michael Wessolly, Elena Mairinger, Daniel Kreidt, Julia Steinborn, Robert F H Walter, Daniel C Christoph, Jens Kollmeier, Jeremias Wohlschlaeger, Thomas Mairinger, Luka Brcic, Fabian D Mairinger

Abstract

The exact mechanism of desmoplastic stromal reaction (DSR) formation is still unclear. The interaction between cancer cells and cancer-associated fibroblasts (CAFs) has an important role in tumor progression, while stromal changes are a poor prognostic factor in pleural mesothelioma (PM). We aimed to assess the impact of CAFs paracrine signaling within the tumor microenvironment and the DSR presence on survival, in a cohort of 77 PM patients. DSR formation was evaluated morphologically and by immunohistochemistry for Fibroblast activation protein alpha (FAP). Digital gene expression was analyzed using a custom-designed CodeSet (NanoString). Decision-tree-based analysis using the "conditional inference tree" (CIT) machine learning algorithm was performed on the obtained results. A significant association between FAP gene expression levels and the appearance of DSR was found (p = 0.025). DSR-high samples demonstrated a statistically significant prolonged median survival time. The elevated expression of MYT1, KDR, PIK3R1, PIK3R4, and SOS1 was associated with shortened OS, whereas the upregulation of VEGFC, FAP, and CDK4 was associated with prolonged OS. CIT revealed a three-tier system based on FAP, NF1, and RPTOR expressions. We could outline the prognostic value of CAFs-induced PI3K signaling pathway activation together with FAP-dependent CDK4 mediated cell cycle progression in PM, where prognostic and predictive biomarkers are urgently needed to introduce new therapeutic strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。