Impact of Digestive Inflammatory Environment and Genipin Crosslinking on Immunomodulatory Capacity of Injectable Musculoskeletal Tissue Scaffold

消化道炎症环境和京尼平交联对可注射肌肉骨骼组织支架免疫调节能力的影响

阅读:7
作者:Colin Shortridge, Ehsan Akbari Fakhrabadi, Leah M Wuescher, Randall G Worth, Matthew W Liberatore, Eda Yildirim-Ayan

Abstract

The paracrine and autocrine processes of the host response play an integral role in the success of scaffold-based tissue regeneration. Recently, the immunomodulatory scaffolds have received huge attention for modulating inflammation around the host tissue through releasing anti-inflammatory cytokine. However, controlling the inflammation and providing a sustained release of anti-inflammatory cytokine from the scaffold in the digestive inflammatory environment are predicated upon a comprehensive understanding of three fundamental questions. (1) How does the release rate of cytokine from the scaffold change in the digestive inflammatory environment? (2) Can we prevent the premature scaffold degradation and burst release of the loaded cytokine in the digestive inflammatory environment? (3) How does the scaffold degradation prevention technique affect the immunomodulatory capacity of the scaffold? This study investigated the impacts of the digestive inflammatory environment on scaffold degradation and how pre-mature degradation can be prevented using genipin crosslinking and how genipin crosslinking affects the interleukin-4 (IL-4) release from the scaffold and differentiation of naïve macrophages (M0). Our results demonstrated that the digestive inflammatory environment (DIE) attenuates protein retention within the scaffold. Over 14 days, the encapsulated protein released 46% more in DIE than in phosphate buffer saline (PBS), which was improved through genipin crosslinking. We have identified the 0.5 (w/v) genipin concentration as an optimal concentration for improved IL-4 released from the scaffold, cell viability, mechanical strength, and scaffold porosity, and immunomodulation studies. The IL-4 released from the injectable scaffold could differentiate naïve macrophages to an anti-inflammatory (M2) lineage; however, upon genipin crosslinking, the immunomodulatory capacity of the scaffold diminished significantly, and pro-inflammatory markers were expressed dominantly.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。