Loss of function of ribosomal protein L13a blocks blastocyst formation and reveals a potential nuclear role in gene expression

核糖体蛋白 L13a 功能丧失阻碍囊胚形成并揭示其在基因表达中的潜在核作用

阅读:6
作者:Ravinder Kour, Jaehwan Kim, Antara Roy, Brian Richardson, Mark J Cameron, Jason G Knott, Barsanjit Mazumder

Abstract

Ribosomal proteins play diverse roles in development and disease. Most ribosomal proteins have canonical roles in protein synthesis, while some exhibit extra-ribosomal functions. Previous studies in our laboratory revealed that ribosomal protein L13a (RPL13a) is involved in the translational silencing of a cohort of inflammatory proteins in myeloid cells. This prompted us to investigate the role of RPL13a in embryonic development. Here we report that RPL13a is required for early development in mice. Crosses between Rpl13a+/- mice resulted in no Rpl13a-/- offspring. Closer examination revealed that Rpl13a-/- embryos were arrested at the morula stage during preimplantation development. RNA sequencing analysis of Rpl13a-/- morulae revealed widespread alterations in gene expression, including but not limited to several genes encoding proteins involved in the inflammatory response, embryogenesis, oocyte maturation, stemness, and pluripotency. Ex vivo analysis revealed that RPL13a was localized to the cytoplasm and nucleus between the two-cell and morula stages. RNAi-mediated depletion of RPL13a phenocopied Rpl13a-/- embryos and knockdown embryos exhibited increased expression of IL-7 and IL-17 and decreased expression of the lineage specifier genes Sox2, Pou5f1, and Cdx2. Lastly, a protein-protein interaction assay revealed that RPL13a is associated with chromatin, suggesting an extra ribosomal function in transcription. In summary, our data demonstrate that RPL13a is essential for the completion of preimplantation embryo development. The mechanistic basis of the absence of RPL13a-mediated embryonic lethality will be addressed in the future through follow-up studies on ribosome biogenesis, global protein synthesis, and identification of RPL13a target genes using chromatin immunoprecipitation and RNA-immunoprecipitation-based sequencing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。