Stabilizing interactions between D666-S1787 and T657-Y1792 at the A2-A3 interface support factor VIIIa stability in the blood clotting pathway

稳定 D666-S1787 和 T657-Y1792 在 A2-A3 界面的相互作用,支持凝血途径中因子 VIIIa 的稳定性

阅读:3
作者:M Monaghan, H Wakabayashi, A E Griffiths, P J Fay

Abstract

Essentials Factor VIIIa (FVIIIa) is unstable due to loss of A2; D666 and Y1792 contribute to its stability. We conducted a study to identify the interactions made at these residues at the A2-A3 interface. We present evidence for stabilizing interactions between D666-S1787 and T657-Y1792 in FVIIIa. A D666C/S1788C variant with a disulfide A2-A3 linkage has a FVIIIa decay rate that is 1% of wild-type. Summary: Background Factor (F)VIIIa activity and stability depends on the non-covalent association of the A2 subunit with the A1/A3C1C2 dimer, but the interactions that contribute to A2 association are not well defined. Previous work had shown that D666A and Y1792F mutations at the A2-A3 interface resulted in increased FVIIIa decay, suggesting that the residues were involved in bonding interactions important for FVIIIa stability. Objectives Several potential hydrogen bonding partners of D666 and Y1792 across the A2-A3 interface were selected from the low-resolution FVIII crystal structure, and we used mutagenesis and biochemical analysis to examine the bonding interactions occurring at D666 and Y1792. Methods Using a series of stability and functional analyses, we analyzed FVIII variants in which D666 and Y1792 were each swapped with the residues of potential bonding partners. Results and conclusions We present evidence for hydrogen bonds between D666 and S1787 and between Y1792 and T657 that are important for FVIIIa stability. D666S/S1787D and T657Y/Y1792T variants each displayed wild-type (WT)-like FVIIIa stability and performed like WT FVIII in a series of functional analyses, whereas D666S, S1787D, and Y1792T single variants showed increased FVIIIa decay and a T657Y variant had little FVIIIa activity. These results suggest that WT hydrogen bonds are disrupted with the single mutations but maintained in the swap variants. Furthermore, mutation of D666 and S1788 to cysteine resulted in disulfide bond formation across the A2-A3 interface, confirming the close proximity of D666 and S1787, and this covalent attachment of the A2 subunit significantly increased FVIIIa stability.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。