E2F/Rb Family Proteins Mediate Interferon Induced Repression of Adenovirus Immediate Early Transcription to Promote Persistent Viral Infection

E2F/Rb 家族蛋白介导干扰素诱导的腺病毒立即早期转录抑制以促进持续病毒感染

阅读:11
作者:Yueting Zheng, Thomas Stamminger, Patrick Hearing

Abstract

Interferons (IFNs) are cytokines that have pleiotropic effects and play important roles in innate and adaptive immunity. IFNs have broad antiviral properties and function by different mechanisms. IFNs fail to inhibit wild-type Adenovirus (Ad) replication in established cancer cell lines. In this study, we analyzed the effects of IFNs on Ad replication in normal human cells. Our data demonstrate that both IFNα and IFNγ blocked wild-type Ad5 replication in primary human bronchial epithelial cells (NHBEC) and TERT-immortalized normal human diploid fibroblasts (HDF-TERT). IFNs inhibited the replication of divergent adenoviruses. The inhibition of Ad5 replication by IFNα and IFNγ is the consequence of repression of transcription of the E1A immediate early gene product. Both IFNα and IFNγ impede the association of the transactivator GABP with the E1A enhancer region during the early phase of infection. The repression of E1A expression by IFNs requires a conserved E2F binding site in the E1A enhancer, and IFNs increased the enrichment of the E2F-associated pocket proteins, Rb and p107, at the E1A enhancer in vivo. PD0332991 (Pabociclib), a specific CDK4/6 inhibitor, dephosphoryles pocket proteins to promote their interaction with E2Fs and inhibited wild-type Ad5 replication dependent on the conserved E2F binding site. Consistent with this result, expression of the small E1A oncoprotein, which abrogates E2F/pocket protein interactions, rescued Ad replication in the presence of IFNα or IFNγ. Finally, we established a persistent Ad infection model in vitro and demonstrated that IFNγ suppresses productive Ad replication in a manner dependent on the E2F binding site in the E1A enhancer. This is the first study that probes the molecular basis of persistent adenovirus infection and reveals a novel mechanism by which adenoviruses utilize IFN signaling to suppress lytic virus replication and to promote persistent infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。