Data denoising with transfer learning in single-cell transcriptomics
利用迁移学习进行单细胞转录组数据去噪
阅读:7
作者:Jingshu Wang, Divyansh Agarwal, Mo Huang, Gang Hu, Zilu Zhou, Chengzhong Ye, Nancy R Zhang
| 期刊: | Nature Methods | 影响因子: | 36.100 |
| 时间: | 2019 | 起止号: | 2019 Sep;16(9):875-878. |
| doi: | 10.1038/s41592-019-0537-1 | 研究方向: | 免疫、细胞生物学 |
| 细胞类型: | 其它细胞 | |
Abstract
Single-cell RNA sequencing (scRNA-seq) data are noisy and sparse. Here, we show that transfer learning across datasets remarkably improves data quality. By coupling a deep autoencoder with a Bayesian model, SAVER-X extracts transferable gene-gene relationships across data from different labs, varying conditions and divergent species, to denoise new target datasets.
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。