Osteogenic Differentiation of Human Periodontal Ligament Stromal Cells Influences Their Immunosuppressive Potential toward Allogenic CD4+ T Cells

人类牙周膜基质细胞的成骨分化影响其对同种异体 CD4+ T 细胞的免疫抑制潜力

阅读:6
作者:Oliwia Miłek, Dino Tur, Lucia Ahčin, Olha Voitseshyna, Christian Behm, Oleh Andrukhov

Abstract

The differentiation ability of human periodontal ligament mesenchymal stromal cells (hPDL-MSCs) in vivo is limited; therefore, some studies considered strategies involving their pre-differentiation in vitro. However, it is not known how the differentiation of hPDL-MSCs influences their immunomodulatory properties. This study investigated how osteogenic differentiation of hPDL-MSCs affects their ability to suppress CD4+ T-lymphocyte proliferation. hPDL-MSCs were cultured for 21 days in osteogenic differentiation or standard culture media. Allogeneic CD4+ T lymphocytes were co-cultured with undifferentiated and differentiated cells in the presence or absence of interferon (IFN)-γ, interleukin (IL)-1β or tumor necrosis factor (TNF)-α, and their proliferation and apoptosis were measured. Additionally, the effects of these cytokines on the expression of immunomodulatory or pro-inflammatory factors were investigated. Our data show that osteogenic differentiation of hPDL-MSCs reduced their ability to suppress the proliferation of CD4+ T lymphocytes in the presence of IFN-γ and enhanced this ability in the presence of IL-1β. These changes were accompanied by a slightly decreased proportion of apoptotic CD4+ in the presence of IFN-γ. The osteogenic differentiation was accompanied by decreases and increases in the activity of indoleamine-2,3-dioxygenase in the presence of IFN-γ and IL-1β, respectively. The basal production of interleukin-8 by hPDL-MSCs was substantially increased upon osteogenic differentiation. In conclusion, this study suggests that pre-differentiation strategies in vitro may impact the immunomodulatory properties of hPDL-MSCs and subsequently affect their therapeutic effectiveness in vivo. These findings provide important insights for the development of MSC-based therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。