Mucin 5AC Serves as the Nexus for β-Catenin/c-Myc Interplay to Promote Glutamine Dependency During Pancreatic Cancer Chemoresistance

粘蛋白 5AC 作为 β-Catenin/c-Myc 相互作用的纽带,在胰腺癌化学耐药期间促进谷氨酰胺依赖性

阅读:7
作者:Koelina Ganguly, Rakesh Bhatia, Sanchita Rauth, Andrew Kisling, Pranita Atri, Christopher Thompson, Raghupathy Vengoji, Shiv Ram Krishn, Dhananjay Shinde, Vinai Thomas, Sukhwinder Kaur, Kavita Mallya, Jesse L Cox, Sushil Kumar, Surinder K Batra

Aims

A major clinical challenge for patients with pancreatic cancer (PC) is metabolic adaptation. Neoplastic cells harboring molecular perturbations suffice for their increased anabolic demand and nucleotide biosynthesis to acquire chemoresistance. The mucin 5AC expressed de novo in malignant pancreas promotes cancer cell stemness and is significantly associated with poor patient survival. Identification of MUC5AC-associated drivers of chemoresistance through metabolic alterations may facilitate the sculpting of a new combinatorial regimen.

Background & aims

A major clinical challenge for patients with pancreatic cancer (PC) is metabolic adaptation. Neoplastic cells harboring molecular perturbations suffice for their increased anabolic demand and nucleotide biosynthesis to acquire chemoresistance. The mucin 5AC expressed de novo in malignant pancreas promotes cancer cell stemness and is significantly associated with poor patient survival. Identification of MUC5AC-associated drivers of chemoresistance through metabolic alterations may facilitate the sculpting of a new combinatorial regimen.

Conclusions

The MUC5AC/β-catenin/c-Myc axis increases the uptake and use of glutamine in PC cells, and cotargeting this axis along with gemcitabine may improve therapeutic efficacy in PC.

Methods

The contributions of MUC5AC to glutaminolysis and gemcitabine resistance were examined by The Cancer Genome Atlas data analysis, RNA sequencing, and immunohistochemistry analysis on pancreatic tissues of KrasG12D;Pdx1-Cre (KC) and KrasG12D;Pdx1-Cre;Muc5ac-/- mice. These were followed by metabolite flux assays as well as biochemical and xenograft studies on MUC5AC-depleted human and murine PC cells. Murine and human pancreatic 3-dimensional tumoroids were used to evaluate the efficacy of gemcitabine in combination with β-catenin and glutaminolysis inhibitors.

Results

Transcriptional analysis showed that high MUC5AC-expressing human and autochthonous murine PC tumors exhibit higher resistance to gemcitabine because of enhanced glutamine use and nucleotide biosynthesis. Gemcitabine treatment led to MUC5AC overexpression, resulting in disruption of E-cadherin/β-catenin junctions and the nuclear translocation of β-catenin, which increased c-Myc expression, with a concomitant rise in glutamine uptake and glutamate release. MUC5AC depletion and glutamine deprivation sensitized human PC cells to gemcitabine, which was obviated by glutamine replenishment in MUC5AC-expressing cells. Coadministration of β-catenin and glutaminolysis inhibitors with gemcitabine abrogated the MUC5AC-mediated resistance in murine and human tumoroids. Conclusions: The MUC5AC/β-catenin/c-Myc axis increases the uptake and use of glutamine in PC cells, and cotargeting this axis along with gemcitabine may improve therapeutic efficacy in PC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。