Application of Novel Transcription Factor Machine Learning Model and Targeted Drug Combination Therapy Strategy in Triple Negative Breast Cancer

新型转录因子机器学习模型及靶向药物联合治疗策略在三阴性乳腺癌中的应用

阅读:3
作者:Jianyu Pang, Huimin Li, Xiaoling Zhang, Zhengwei Luo, Yongzhi Chen, Haijie Zhao, Handong Lv, Hongan Zheng, Zhiqian Fu, Wenru Tang, Miaomiao Sheng

Abstract

Transcription factors (TFs) have been shown to play a key role in the occurrence and development of tumors, including triple-negative breast cancer (TNBC), with a worse prognosis. Machine learning is widely used for establishing prediction models and screening key tumor drivers. Current studies lack TF integration in TNBC, so targeted research on TF prognostic models and targeted drugs is beneficial to improve clinical translational application. The purpose of this study was to use the Least Absolute Shrinkage and Selection Operator to build a prognostic TFs model after cohort normalization based on housekeeping gene expression levels. Potential targeted drugs were then screened on the basis of molecular docking, and a multi-drug combination strategy was used for both in vivo and in vitro experimental studies. The machine learning model of TFs built by E2F8, FOXM1, and MYBL2 has broad applicability, with an AUC value of up to 0.877 at one year. As a high-risk clinical factor, its abnormal disorder may lead to upregulation of the activity of pathways related to cell proliferation. This model can also be used to predict the adverse effects of immunotherapy in patients with TNBC. Molecular docking was used to screen three drugs that target TFs: Trichostatin A (TSA), Doxorubicin (DOX), and Calcitriol. In vitro and in vivo experiments showed that TSA + DOX was able to effectively reduce DOX dosage, and TSA + DOX + Calcitriol may be able to effectively reduce the toxic side effects of DOX on the heart. In conclusion, the machine learning model based on three TFs provides new biomarkers for clinical and prognostic diagnosis of TNBC, and the combination targeted drug strategy offers a novel research perspective for TNBC treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。