An improved strategy for the synthesis of [¹⁸F]-labeled arabinofuranosyl nucleosides

一种合成[¹⁸F]标记阿拉伯呋喃核苷的改进策略

阅读:6
作者:Hanwen Zhang, Melchor V Cantorias, NagaVaraKishore Pillarsetty, Eva M Burnazi, Shangde Cai, Jason S Lewis

Abstract

The expression of the herpes simplex virus type-1 thymidine kinase (HSV1-tk) gene can be imaged efficaciously using a variety of 2'-[(18)F]fluoro-2'-deoxy-1-b-D-arabinofuranosyl-uracil derivatives [[(18)F]-FXAU, X=I(iodo), E(ethyl), and M(methyl)]. However, the application of these derivatives in clinical and translational studies has been impeded by their complicated and long syntheses (3-5h). To remedy these issues, in the study at hand we have investigated whether microwave or combined catalysts could facilitate the coupling reaction between sugar and nucleobase and, further, have probed the feasibility of establishing a novel approach for [(18)F]-FXAU synthesis. We have demonstrated that the rate of the trimethylsilyl trifluoromethanesulfonate (TMSOTf)-catalyzed coupling reaction between the 2-deoxy-sugar and uracil derivatives at 90 °C can be significantly accelerated by microwave-driven heating or by the addition of Lewis acid catalyst (SnCl(4)). Further, we have observed that the stability of the α- and β-anomers of [(18)F]-FXAU derivatives differs during the hydrolysis step. Using the microwave-driven heating approach, overall decay-corrected radiochemical yields of 19%-27% were achieved for [(18)F]-FXAU in 120min at a specific activity of >22MBq/nmol (595Ci/mmol). Ultimately, we believe that these high yielding syntheses of [(18)F]-FIAU, [(18)F]-FMAU and [(18)F]-FEAU will facilitate routine production for clinical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。