Enriching productive mutational paths accelerates enzyme evolution

丰富的生产性突变途径加速酶的进化

阅读:6
作者:David Patsch #, Thomas Schwander #, Moritz Voss #, Daniela Schaub, Sean Hüppi, Michael Eichenberger, Peter Stockinger, Lisa Schelbert, Sandro Giger, Francesca Peccati, Gonzalo Jiménez-Osés, Mojmír Mutný, Andreas Krause, Uwe T Bornscheuer, Donald Hilvert, Rebecca M Buller

Abstract

Darwinian evolution has given rise to all the enzymes that enable life on Earth. Mimicking natural selection, scientists have learned to tailor these biocatalysts through recursive cycles of mutation, selection and amplification, often relying on screening large protein libraries to productively modulate the complex interplay between protein structure, dynamics and function. Here we show that by removing destabilizing mutations at the library design stage and taking advantage of recent advances in gene synthesis, we can accelerate the evolution of a computationally designed enzyme. In only five rounds of evolution, we generated a Kemp eliminase-an enzymatic model system for proton transfer from carbon-that accelerates the proton abstraction step >108-fold over the uncatalyzed reaction. Recombining the resulting variant with a previously evolved Kemp eliminase HG3.17, which exhibits similar activity but differs by 29 substitutions, allowed us to chart the topography of the designer enzyme's fitness landscape, highlighting that a given protein scaffold can accommodate several, equally viable solutions to a specific catalytic problem.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。