Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data

基于快速插值的 t-SNE 可改善单细胞 RNA 序列数据的可视化

阅读:6
作者:George C Linderman, Manas Rachh, Jeremy G Hoskins, Stefan Steinerberger, Yuval Kluger

Abstract

t-distributed stochastic neighbor embedding (t-SNE) is widely used for visualizing single-cell RNA-sequencing (scRNA-seq) data, but it scales poorly to large datasets. We dramatically accelerate t-SNE, obviating the need for data downsampling, and hence allowing visualization of rare cell populations. Furthermore, we implement a heatmap-style visualization for scRNA-seq based on one-dimensional t-SNE for simultaneously visualizing the expression patterns of thousands of genes. Software is available at https://github.com/KlugerLab/FIt-SNE and https://github.com/KlugerLab/t-SNE-Heatmaps .

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。