Impact of long-term feeding a high level of Spirulina combined with enzymes on growth performance, carcass traits and meat quality in broiler chickens

长期饲喂高水平螺旋藻与酶制剂对肉鸡生长性能、胴体性状和肉品质的影响

阅读:5
作者:Maria P Spínola #, Mónica M Costa #, Beatriz Tavares, José M Pestana, João C Tavares, Cátia F Martins, Cristina M Alfaia, Verena Maciel, Daniela F P Carvalho, Miguel P Mourato, Madalena M Lordelo, José A M Prates

Abstract

This study evaluates the effect of prolonged feeding with a high inclusion level of Spirulina, combined with peptidases, on broiler chicken's growth performance, digesta viscosity, carcass attributes and meat quality. The experiment involved 120 male broilers divided into 40 battery brooders, each housing 3 birds. Post 7-day acclimatisation with a corn and soybean-based diet, the birds were provided with one of four diets: a corn and soybean meal-based diet (CON), a mix incorporating 15% Spirulina (SP), a Spirulina-rich mix supplemented with 0.025% of commercial VemoZyme® P (SPV), or a Spirulina-rich mix supplemented with 0.10% of porcine pancreatin (SPP). The CON group had higher body weight and weight gain (p < 0.001) and a lower feed conversion ratio (p < 0.001) from day 7-21, compared to the Spirulina-fed groups. Spirulina-fed chickens significantly increased ileum viscosity (p < 0.05). Spirulina also elevated the weight (p < 0.05) of the duodenum and the length (p < 0.001) of the entire gastrointestinal tract compared to CON. Breast and thigh muscles from Spirulina-fed broilers displayed higher values of yellowness (b*) (p < 0.001), pigments (p < 0.05), and n-3 PUFA (p < 0.01), while n-6/n-3 ratio (p < 0.001) and α-tocopherol (p < 0.001) decreased relative to the CON. In conclusion, the introduction of a high level of Spirulina into broiler diets for an extended duration, has the potential to diminish birds' growth performance, possibly due to increased digesta viscosity. However, it does enhance the nutritional quality of the meat.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。