Biomolecular condensates create phospholipid-enriched microenvironments

生物分子凝聚物创造富含磷脂的微环境

阅读:4
作者:Jason G Dumelie, Qiuying Chen, Dawson Miller #, Nabeel Attarwala #, Steven S Gross, Samie R Jaffrey

Abstract

Proteins and RNA can phase separate from the aqueous cellular environment to form subcellular compartments called condensates. This process results in a protein-RNA mixture that is chemically different from the surrounding aqueous phase. Here, we use mass spectrometry to characterize the metabolomes of condensates. To test this, we prepared mixtures of phase-separated proteins and extracts of cellular metabolites and identified metabolites enriched in the condensate phase. Among the most condensate-enriched metabolites were phospholipids, due primarily to the hydrophobicity of their fatty acyl moieties. We found that phospholipids can alter the number and size of phase-separated condensates and in some cases alter their morphology. Finally, we found that phospholipids partition into a diverse set of endogenous condensates as well as artificial condensates expressed in cells. Overall, these data show that many condensates are protein-RNA-lipid mixtures with chemical microenvironments that are ideally suited to facilitate phospholipid biology and signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。