Proteomic analysis of ubiquitination substrates reveals a CTLH E3 ligase complex-dependent regulation of glycolysis

泛素化底物的蛋白质组学分析揭示了 CTLH E3 连接酶复合物依赖的糖酵解调节

阅读:4
作者:Matthew E R Maitland, Miljan Kuljanin, Xu Wang, Gilles A Lajoie, Caroline Schild-Poulter

Abstract

Ubiquitination is an essential post-translational modification that regulates protein stability or function. Its substrate specificity is dictated by various E3 ligases. The human C-terminal to LisH (CTLH) complex is a newly discovered multi-subunit really interesting new gene (RING) E3 ligase with only a few known ubiquitination targets. Here, we used mass spectrometry-based proteomic techniques to gain insight into CTLH complex function and ubiquitination substrates in HeLa cells. First, global proteomics determined proteins that were significantly increased, and thus may be substrates targeted for degradation, in cells depleted of CTLH complex member RanBPM. RanBPM-dependent ubiquitination determined using diGLY-enriched proteomics and the endogenous RanBPM interactome further revealed candidate ubiquitination targets. Three glycolysis enzymes alpha-enolase, L-lactate dehydrogenase A chain (LDHA), and pyruvate kinase M1/2 (PKM) had decreased ubiquitin sites in shRanBPM cells and were found associated with RanBPM in the interactome. Reduced polyubiquitination was validated for PKM2 and LDHA in cells depleted of RanBPM and CTLH complex RING domain subunit RMND5A. PKM2 and LDHA protein levels were unchanged, yet their activity was increased in extracts of cells with downregulated RanBPM. Finally, RanBPM deficient cells displayed enhanced glycolysis and deregulated central carbon metabolism. Overall, this study identifies potential CTLH complex ubiquitination substrates and uncovers that the CTLH complex inhibits glycolysis via non-degradative ubiquitination of PKM2 and LDHA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。