PHYTOCHROME-DEPENDENT LATE-FLOWERING accelerates flowering through physical interactions with phytochrome B and CONSTANS

依赖光敏色素的晚花素通过与光敏色素 B 和 CONSTANS 的物理相互作用加速开花

阅读:5
作者:Motomu Endo, Yoshiyasu Tanigawa, Tadashi Murakami, Takashi Araki, Akira Nagatani

Abstract

In flowering plants, light is one of the major environmental stimuli that determine the timing of the transition from the vegetative to reproductive phase. In Arabidopsis, phytochrome B (phyB); phyA; cryptochrome 2; and flavin-binding, KELCH repeat, F-BOX 1 are major photoreceptors that regulate flowering. Unlike phyA; cryptochrome 2; and flavin-binding, KELCH repeat, F-BOX 1, phyB delays flowering mainly by destabilizing the CONSTANS (CO) protein, whose reduction leads to decreased expression of a florigen gene, flowering locus T. However, it remains unclear how the phyB-mediated CO destabilization is mechanistically regulated. Here, we identify a unique phytochrome-dependent late-flowering (PHL) gene, which is mainly involved in the phyB-dependent regulation of flowering. Plants with mutant phl exhibited a late-flowering phenotype, especially under long-day conditions. The late-flowering phenotype of the phl mutant was completely overridden by a phyB mutation, indicating that PHL normally accelerates flowering by countering the inhibitory effect of phyB on flowering. Accordingly, PHL physically interacted with phyB both in vitro and in vivo in a red light-dependent manner. Furthermore, in the presence of phyB under red light, PHL interacted with CO as well. Taken together, we propose that PHL regulates photoperiodic flowering by forming a phyB-PHL-CO tripartite complex.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。