Sulfation of 4-hydroxy toremifene: individual variability, isoform specificity, and contribution to toremifene pharmacogenomics

4-羟基托瑞米芬的硫酸化:个体差异、异构体特异性及其对托瑞米芬药物基因组学的贡献

阅读:6
作者:Vineetha Koroth Edavana, Ishwori B Dhakal, Xinfeng Yu, Suzanne Williams, Susan Kadlubar

Abstract

Toremifene (TOR) is a selective estrogen receptor modulator used in adjuvant therapy for breast cancer and in clinical trials for prostate cancer prevention. The chemical structure of TOR differs from that of tamoxifen (TAM) by the presence of a chlorine atom in the ethyl side chain, resulting in a more favorable toxicity spectrum with TOR. In addition, some patients who fail on TAM therapy benefit from high-dose TOR therapy. Several studies have indicated that functional genetic variants in the TAM metabolic pathway influence response to therapy, but pharmacogenomic studies of patients treated with TOR are lacking. In this study, we examined individual variability in sulfation of 4-hydroxy TOR (4-OH TOR) (the active metabolite of TOR) in human liver cytosols from 104 subjects and found approximately 30-fold variation in activity. 4-OH TOR sulfation was significantly correlated (r = 0.98, P < 0.0001) with β-naphthol sulfation (diagnostic for SULT1A1) but not with 17β estradiol sulfation, a diagnostic substrate for SULT1E1(r = 0.09, P = 0.34). Examination of recombinant sulfotransferases (SULTs) revealed that SULT1A1 and SULT1E1 catalyzed 4-OH TOR sulfation, with apparent Km values of 2.6 and 6.4 μM and Vmax values of 8.5 and 5.5 nmol x min(-1) x mg protein(-1), respectively. 4-OH TOR sulfation was inhibited by 2,6-dichloro-4-nitrophenol (IC50 = 2.34 ± 0.19 μM), a specific inhibitor of SULT1A1. There was also a significant association between SULT1A1 genotypes and copy number and 4-OH TOR sulfation in human liver cytosols. These results indicate that variability in sulfation could contribute to response to TOR in the treatment of breast and prostate cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。