Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning

使用深度循环学习对单细胞转录组学中的细胞类型组成进行可扩展分析

阅读:5
作者:Yue Deng, Feng Bao, Qionghai Dai, Lani F Wu, Steven J Altschuler

Abstract

Recent advances in large-scale single-cell RNA-seq enable fine-grained characterization of phenotypically distinct cellular states in heterogeneous tissues. We present scScope, a scalable deep-learning-based approach that can accurately and rapidly identify cell-type composition from millions of noisy single-cell gene-expression profiles.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。