Haloperidol Affects Plasticity of Differentiated NG-108 Cells Through σ1R/IP3R1 Complex

氟哌啶醇通过σ1R/IP3R1复合物影响分化NG-108细胞的可塑性

阅读:6
作者:Jana Kubickova, Lubomira Lencesova, Lucia Csaderova, Tibor Stracina, Sona Hudecova, Petr Babula, Eva Rozborilova, Marie Novakova, Olga Krizanova

Abstract

Haloperidol is an antipsychotic agent that primarily acts as an antagonist of D2 dopamine receptors. Besides other receptor systems, it targets sigma 1 receptors (σ1Rs) and inositol 1,4,5-trisphosphate receptors (IP3Rs). Aim of this work was to investigate possible changes in IP3Rs and σ1Rs resulting from haloperidol treatment and to propose physiological consequences in differentiated NG-108 cells, i.e., effect on cellular plasticity. Haloperidol treatment resulted in up-regulation of both type 1 IP3Rs (IP3R1s) and σ1Rs at mRNA and protein levels. Haloperidol treatment did not alter expression of other types of IP3Rs. Calcium release from endoplasmic reticulum (ER) mediated by increased amount of IP3R1s elevated cytosolic calcium and generated ER stress. IP3R1s were bound to σ1Rs, and translocation of this complex from ER to nucleus occurred in the group of cells treated with haloperidol, which was followed by increased nuclear calcium levels. Haloperidol-induced changes in cytosolic, reticular, and nuclear calcium levels were similar when specific σ1 blocker -BD 1047- was used. Changes in calcium levels in nucleus, ER, and cytoplasm might be responsible for alterations in cellular plasticity, because length of neurites increased and number of neurites decreased in haloperidol-treated differentiated NG-108 cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。