Regulation and Role of Chitotriosidase during Lung Infection with Klebsiella pneumoniae

壳三糖苷酶在肺炎克雷伯菌肺部感染中的调控及作用

阅读:6
作者:Lokesh Sharma, Alyssa K Amick, Swathy Vasudevan, Sei Won Lee, Chad R Marion, Wei Liu, Virginia Brady, Ashley Losier, Santos D Bermejo, Clemente J Britto, Chun Geun Lee, Jack A Elias, Charles S Dela Cruz

Abstract

Chitinases and chitinase-like proteins are an evolutionary conserved group of proteins. In the absence of chitin synthesis in mammals, the conserved presence of chitinases suggests their roles in physiology and immunity, but experimental evidence to prove these roles is scarce. Chitotriosidase (chit1) is one of the two true chitinases present in mammals and the most prevalent chitinase in humans. In this study, we investigated the regulation and the role of chit1 in a mouse model of Klebsiella pneumoniae lung infection. We show that chitinase activity in bronchoalveolar lavage fluid is significantly reduced during K. pneumoniae lung infection. This reduced activity is inversely correlated with the number of neutrophils. Further, instilling neutrophil lysates in lungs decreased chitinase activity. We observed degradation of chit1 by neutrophil proteases. In a mouse model, chit1 deficiency provided a significant advantage to the host during K. pneumoniae lung infection by limiting bacterial dissemination. This phenotype was independent of inflammatory changes in chit1-/- mice as they exerted a similar inflammatory response. The decreased dissemination resulted in improved survival in chit1-/- mice infected with K. pneumoniae in the presence or absence of antibiotic therapy. The beneficial effects of chit1 deficiency were associated with altered Akt activation in the lungs. Chit1-/- mice induced a more robust Akt activation postinfection. The role of the Akt pathway in K. pneumoniae lung infection was confirmed by using an Akt inhibitor, which impaired health and survival. These data suggest a detrimental role of chit1 in K. pneumoniae lung infections.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。