Failure of postnatal ductus arteriosus closure in prostaglandin transporter-deficient mice

前列腺素转运蛋白缺乏的小鼠出生后动脉导管闭合失败

阅读:5
作者:Hee-Yoon Chang, Joseph Locker, Run Lu, Victor L Schuster

Background

Prostaglandin E(2) (PGE(2)) plays a major role both in maintaining patency of the fetal ductus arteriosus and in closure of the ductus arteriosus after birth. The rate-limiting step in PGE(2) signal termination is PGE(2) uptake by the transporter PGT.

Conclusions

PGT plays a critical role in closure of the ductus arteriosus after birth by ensuring a reduction in local and/or circulating PGE(2) concentrations.

Results

To determine the role of PGT in ductus arteriosus closure, we used a gene-targeting strategy to produce mice in which PGT exon 1 was flanked by loxP sites. Successful targeting was obtained because neither mice hypomorphic at the PGT allele (PGT Neo/Neo) nor global PGT knockout mice (PGT(-/-)) exhibited PGT protein expression; moreover, embryonic fibroblasts isolated from targeted mice failed to exhibit carrier-mediated PGE(2) uptake. Although born in a normal mendelian ratio, no PGT(-/-) mice survived past postnatal day 1, and no PGT Neo/Neo mice survived past postnatal day 2. Necropsy revealed patent ductus arteriosus with normal intimal thickening but dilated cardiac chambers. Both PGT Neo/Neo and PGT(-/-) mice could be rescued through the postnatal period by giving the mother indomethacin before birth. Rescued mice grew normally and had no abnormalities by gross and microscopic postmortem analyses. In accordance with the known role of PGT in metabolizing PGE(2), rescued adult PGT(-/-) mice had lower plasma PGE(2) metabolite levels and higher urinary PGE(2) excretion rates than wild-type mice. Conclusions: PGT plays a critical role in closure of the ductus arteriosus after birth by ensuring a reduction in local and/or circulating PGE(2) concentrations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。